全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > EDA/IC设计 >

MATLAB入门教程之数值分析

时间:2011-02-11 11:49

人气:

作者:admin

标签:

导读:MATLAB入门教程之数值分析-MATLAB入门教程之数值分析...

数值分析

2.1微分  diff函数用以演算一函数的微分项,相关的函数语法有下列4个:   diff(f) 传回f对预设独立变数的一次微分值   diff(f,'t') 传回f对独立变数t的一次微分值   diff(f,n) 传回f对预设独立变数的n次微分值   diff(f,'t',n) 传回f对独立变数t的n次微分值     数值微分函数也是用diff,因此这个函数是靠输入的引数决定是以数值或是符号微分,如果引数为向量则执行数值微分,如果引数为符号表示式则执行符号微分。      先定义下列三个方程式,接著再演算其微分项:   >>S1 = '6*x^3-4*x^2+b*x-5';   >>S2 = 'sin(a)';   >>S3 = '(1 - t^3)/(1 + t^4)';   >>diff(S1)   ans=18*x^2-8*x+b   >>diff(S1,2)   ans= 36*x-8   >>diff(S1,'b')   ans= x   >>diff(S2)   ans=   cos(a)   >>diff(S3)   ans=-3*t^2/(1+t^4)-4*(1-t^3)/(1+t^4)^2*t^3   >>simplify(diff(S3))   ans= t^2*(-3+t^4-4*t)/(1+t^4)^2    2.2积分   int函数用以演算一函数的积分项, 这个函数要找出一符号式 F 使得diff(F)=f。如果积 分式的解析式 (analytical form, closed form) 不存在的话或是MATLAB无法找到,则int 传回原输入的符号式。相关的函数语法有下列 4个:   int(f) 传回f对预设独立变数的积分值   int(f,'t') 传回f对独立变数t的积分值   int(f,a,b) 传回f对预设独立变数的积分值,积分区间为[a,b],a和b为数值式   int(f,'t',a,b) 传回f对独立变数t的积分值,积分区间为[a,b],a和b为数值式   int(f,'m','n') 传回f对预设变数的积分值,积分区间为[m,n],m和n为符号式   我们示范几个例子:   >>S1 = '6*x^3-4*x^2+b*x-5';   >>S2 = 'sin(a)';   >>S3 = 'sqrt(x)';  >>int(S1)   ans= 3/2*x^4-4/3*x^3+1/2*b*x^2-5*x   >>int(S2)   ans= -cos(a)   >>int(S3)   ans= 2/3*x^(3/2)   >>int(S3,'a','b')   ans= 2/3*b^(3/2)- 2/3*a^(3/2)   >>int(S3,0.5,0.6)    ans= 2/25*15^(1/2)-1/6*2^(1/2)   >>numeric(int(S3,0.5,0.6)) % 使用numeric函数可以计算积分的数值   ans= 0.0741    2.3求解常微分方程式      MATLAB解常微分方程式的语法是dsolve('equation','condition'),其中equation代表常微分方程式即y'=g(x,y),且须以Dy代表一阶微分项y' D2y代表二阶微分项y'' ,    condition则为初始条件。      假设有以下三个一阶常微分方程式和其初始条件      y'=3x2, y(2)=0.5     y'=2.x.cos(y)2, y(0)=0.25       y'=3y+exp(2x), y(0)=3     对应上述常微分方程式的符号运算式为:       >>soln_1 = dsolve('Dy = 3*x^2','y(2)=0.5')       ans= x^3-7.500000000000000      >>ezplot(soln_1,[2,4]) % 看看这个函数的长相        >>soln_2 = dsolve('Dy = 2*x*cos(y)^2','y(0) = pi/4')       ans= atan(x^2+1)     >>soln_3 = dsolve('Dy = 3*y + exp(2*x)',' y(0) = 3')       ans= -exp(2*x)+4*exp(3*x)      2.4非线性方程式的实根       要求任一方程式的根有三步骤:        先定义方程式。要注意必须将方程式安排成 f(x)=0 的形态,例如一方程式为sin(x)=3, 则该方程式应表示为 f(x)=sin(x)-3。可以 m-file 定义方程式。       代入适当范围的 x, y(x) 值,将该函数的分布图画出,藉以了解该方程式的「长相」。      由图中决定y(x)在何处附近(x0)与 x 轴相交,以fzero的语法fzero('function',x0) 即可求出在 x0附近的根,其中 function 是先前已定义的函数名称。如果从函数分布图看出根不只一个,则须再代入另一个在根附近的 x0,再求出下一个根。        以下分别介绍几数个方程式,来说明如何求解它们的根。      例一、方程式为       sin(x)=0       我们知道上式的根有 ,求根方式如下:   >> r=fzero('sin',3) % 因为sin(x)是内建函数,其名称为sin,因此无须定义它,选择 x=3 附近求根    r=3.1416   >> r=fzero('sin',6) % 选择 x=6 附近求根   r = 6.2832        例二、方程式为MATLAB 内建函数 humps,我们不须要知道这个方程式的形态为何,不过我们可以将它划出来,再找出根的位置。求根方式如下:   >> x=linspace(-2,3);   >> y=humps(x);   >> plot(x,y), grid % 由图中可看出在0和1附近有二个根

   >> r=fzero('humps',1.2)  

r = 1.2995    例三、方程式为y=x.^3-2*x-5       这个方程式其实是个多项式,我们说明除了用 roots 函数找出它的根外,也可以用这节介绍的方法求根,注意二者的解法及结果有所不同。求根方式如下:   % m-function, f_1.m   function y=f_1(x) % 定义 f_1.m 函数   y=x.^3-2*x-5;  >> x=linspace(-2,3);   >> y=f_1(x);   >> plot(x,y), grid % 由图中可看出在2和-1附近有二个根       >> r=fzero('f_1',2); % 决定在2附近的根   r = 2.0946   >> p=[1 0 -2 -5]   >> r=roots(p) % 以求解多项式根方式验证   r =   2.0946   -1.0473 + 1.1359i    -1.0473 - 1.1359i     2.5线性代数方程(组)求解     我们习惯将上组方程式以矩阵方式表示如下        AX=B   其中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项  要解上述的联立方程式,我们可以利用矩阵左除 \ 做运算,即是 X=A\B。       如果将原方程式改写成 XA=B  其中 A 为等式左边各方程式的系数项,X 为欲求解的未知项,B 代表等式右边之已知项      注意上式的 X, B 已改写成列向量,A其实是前一个方程式中 A 的转置矩阵。上式的 X 可以矩阵右除 / 求解,即是 X=B/A。       若以反矩阵运算求解 AX=B, X=B,即是 X=inv(A)*B,或是改写成 XA=B, X=B,即是X=B*inv(A)。         我们直接以下面的例子来说明这三个运算的用法:    >> A=[3 2 -1; -1 3 2; 1 -1 -1]; % 将等式的左边系数键入   >> B=[10 5 -1]'; % 将等式右边之已知项键入,B要做转置   >> X=A\B % 先以左除运算求解   X = % 注意X为行向量   -2   5   6   >> C=A*X % 验算解是否正确   C = % C=B     10   5   -1  >> A=A'; % 将A先做转置   >> B=[10 5 -1];   >> X=B/A % 以右除运算求解的结果亦同   X = % 注意X为列向量   10 5 -1   >> X=B*inv(A); % 也可以反矩阵运算求解 
温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信