全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 可编程逻辑 >

一文读懂缓存淘汰算法:LFU 算法

时间:2020-08-25 17:37

人气:

作者:admin

标签: 数据结构 

导读:从实现难度上来说,LFU 算法的难度大于 LRU 算法,因为 LRU 算法相当于把数据按照时间排序,这个需求借助链表很自然就能实现,你一直从链表头部加入元素的话,越靠近头部的元素就是...

作者:labuladong

上篇文章算法题就像搭乐高:手把手带你拆解 LRU 算法写了 LRU 缓存淘汰算法的实现方法,本文来写另一个著名的缓存淘汰算法:LFU 算法。

从实现难度上来说,LFU 算法的难度大于 LRU 算法,因为 LRU 算法相当于把数据按照时间排序,这个需求借助链表很自然就能实现,你一直从链表头部加入元素的话,越靠近头部的元素就是新的数据,越靠近尾部的元素就是旧的数据,我们进行缓存淘汰的时候只要简单地将尾部的元素淘汰掉就行了。

而 LFU 算法相当于是淘汰访问频次最低的数据,如果访问频次最低的数据有多条,需要淘汰最旧的数据。把数据按照访问频次进行排序,而且频次还会不断变化,这可不容易实现。

所以说 LFU 算法要复杂很多,labuladong 进字节跳动的时候就被面试官问到了 LFU 算法。

话说回来,这种著名的算法的套路都是固定的,关键是由于逻辑较复杂,不容易写出漂亮且没有 bug 的代码

那么本文 labuladong 就带你拆解 LFU 算法,自顶向下,逐步求精。

一、算法描述

要求你写一个类,接受一个capacity参数,实现get和put方法:

classLFUCache{
//构造容量为capacity的缓存
publicLFUCache(intcapacity){}
//在缓存中查询key
publicintget(intkey){}
//将key和val存入缓存
publicvoidput(intkey,intval){}
}

get(key)方法会去缓存中查询键key,如果key存在,则返回key对应的val,否则返回 -1。

put(key, value)方法插入或修改缓存。如果key已存在,则将它对应的值改为val;如果key不存在,则插入键值对(key, val)。

当缓存达到容量capacity时,则应该在插入新的键值对之前,删除使用频次(后文用freq表示)最低的键值对。如果freq最低的键值对有多个,则删除其中最旧的那个。

//构造一个容量为2的LFU缓存
LFUCachecache=newLFUCache(2);

//插入两对(key,val),对应的freq为1
cache.put(1,10);
cache.put(2,20);

//查询key为1对应的val
//返回10,同时键1对应的freq变为2
cache.get(1);

//容量已满,淘汰freq最小的键2
//插入键值对(3,30),对应的freq为1
cache.put(3,30);

//键2已经被淘汰删除,返回-1
cache.get(2);

二、思路分析

一定先从最简单的开始,根据 LFU 算法的逻辑,我们先列举出算法执行过程中的几个显而易见的事实:

1、调用get(key)方法时,要返回该key对应的val。

2、只要用get或者put方法访问一次某个key,该key的freq就要加一。

3、如果在容量满了的时候进行插入,则需要将freq最小的key删除,如果最小的freq对应多个key,则删除其中最旧的那一个。

好的,我们希望能够在 O(1) 的时间内解决这些需求,可以使用基本数据结构来逐个击破:

1、使用一个HashMap存储key到val的映射,就可以快速计算get(key)。

HashMapkeyToVal;

2、使用一个HashMap存储key到freq的映射,就可以快速操作key对应的freq。

HashMapkeyToFreq;

3、这个需求应该是 LFU 算法的核心,所以我们分开说。

3.1首先,肯定是需要freq到key的映射,用来找到freq最小的key。

3.2、将freq最小的key删除,那你就得快速得到当前所有key最小的freq是多少。想要时间复杂度 O(1) 的话,肯定不能遍历一遍去找,那就用一个变量minFreq来记录当前最小的freq吧。

3.3、可能有多个key拥有相同的freq,所以freq对key是一对多的关系,即一个freq对应一个key的列表。

3.4、希望freq对应的key的列表是存在时序的,便于快速查找并删除最旧的key。

3.5、希望能够快速删除key列表中的任何一个key,因为如果频次为freq的某个key被访问,那么它的频次就会变成freq+1,就应该从freq对应的key列表中删除,加到freq+1对应的key的列表中。

HashMap>freqToKeys;
intminFreq=0;

介绍一下这个LinkedHashSet,它满足我们 3.3,3.4,3.5 这几个要求。你会发现普通的链表LinkedList能够满足 3.3,3.4 这两个要求,但是由于普通链表不能快速访问链表中的某一个节点,所以无法满足 3.5 的要求。

LinkedHashSet顾名思义,是链表和哈希集合的结合体。链表不能快速访问链表节点,但是插入元素具有时序;哈希集合中的元素无序,但是可以对元素进行快速的访问和删除。

那么,它俩结合起来就兼具了哈希集合和链表的特性,既可以在 O(1) 时间内访问或删除其中的元素,又可以保持插入的时序,高效实现 3.5 这个需求。

综上,我们可以写出 LFU 算法的基本数据结构:

classLFUCache{
//key到val的映射,我们后文称为KV表
HashMapkeyToVal;
//key到freq的映射,我们后文称为KF表
HashMapkeyToFreq;
//freq到key列表的映射,我们后文称为FK表
HashMap>freqToKeys;
//记录最小的频次
intminFreq;
//记录LFU缓存的最大容量
intcap;

publicLFUCache(intcapacity){
keyToVal=newHashMap<>();
keyToFreq=newHashMap<>();
freqToKeys=newHashMap<>();
this.cap=capacity;
this.minFreq=0;
}

publicintget(intkey){}

publicvoidput(intkey,intval){}

}

三、代码框架

LFU 的逻辑不难理解,但是写代码实现并不容易,因为你看我们要维护KV表,KF表,FK表三个映射,特别容易出错。对于这种情况,labuladong 教你三个技巧:

1、不要企图上来就实现算法的所有细节,而应该自顶向下,逐步求精,先写清楚主函数的逻辑框架,然后再一步步实现细节。

2、搞清楚映射关系,如果我们更新了某个key对应的freq,那么就要同步修改KF表和FK表,这样才不会出问题。

3、画图,画图,画图,重要的话说三遍,把逻辑比较复杂的部分用流程图画出来,然后根据图来写代码,可以极大减少出错的概率。

下面我们先来实现get(key)方法,逻辑很简单,返回key对应的val,然后增加key对应的freq:

publicintget(intkey){
if(!keyToVal.containsKey(key)){
return-1;
}
//增加key对应的freq
increaseFreq(key);
returnkeyToVal.get(key);
}

增加key对应的freq是 LFU 算法的核心,所以我们干脆直接抽象成一个函数increaseFreq,这样get方法看起来就简洁清晰了对吧。

下面来实现put(key, val)方法,逻辑略微复杂,我们直接画个图来看:

一文读懂缓存淘汰算法:LFU 算法

这图就是随手画的,不是什么正规的程序流程图,但是算法逻辑一目了然,看图可以直接写出put方法的逻辑:

publicvoidput(intkey,intval){
if(this.cap<= 0) return;

    /* 若 key 已存在,修改对应的 val 即可 */
    if (keyToVal.containsKey(key)) {
        keyToVal.put(key, val);
        // key 对应的 freq 加一
        increaseFreq(key);
        return;
    }

    /* key 不存在,需要插入 */
    /* 容量已满的话需要淘汰一个 freq 最小的 key */
    if (this.cap <= keyToVal.size()) {
        removeMinFreqKey();
    }

    /* 插入 key 和 val,对应的 freq 为 1 */
    // 插入 KV 表
    keyToVal.put(key, val);
    // 插入 KF 表
    keyToFreq.put(key, 1);
    // 插入 FK 表
    freqToKeys.putIfAbsent(1, new LinkedHashSet<>());
freqToKeys.get(1).add(key);
//插入新key后最小的freq肯定是1
this.minFreq=1;
}

increaseFreq和removeMinFreqKey方法是 LFU 算法的核心,我们下面来看看怎么借助KV表,KF表,FK表这三个映射巧妙完成这两个函数。

四、LFU 核心逻辑

首先来实现removeMinFreqKey函数:

privatevoidremoveMinFreqKey(){
//freq最小的key列表
LinkedHashSetkeyList=freqToKeys.get(this.minFreq);
//其中最先被插入的那个key就是该被淘汰的key
intdeletedKey=keyList.iterator().next();
/*更新FK表*/
keyList.remove(deletedKey);
if(keyList.isEmpty()){
freqToKeys.remove(this.minFreq);
//问:这里需要更新 minFreq 的值吗?
}
/*更新KV表*/
keyToVal.remove(deletedKey);
/*更新KF表*/
keyToFreq.remove(deletedKey);
}

删除某个键key肯定是要同时修改三个映射表的,借助minFreq参数可以从FK表中找到freq最小的keyList,根据时序,其中第一个元素就是要被淘汰的deletedKey,操作三个映射表删除这个key即可。

但是有个细节问题,如果keyList中只有一个元素,那么删除之后minFreq对应的key列表就为空了,也就是minFreq变量需要被更新。如何计算当前的minFreq是多少呢?

实际上没办法快速计算minFreq,只能线性遍历FK表或者KF表来计算,这样肯定不能保证 O(1) 的时间复杂度。

但是,其实这里没必要更新minFreq变量,因为你想想removeMinFreqKey这个函数是在什么时候调用?在put方法中插入新key时可能调用。而你回头看put的代码,插入新key时一定会把minFreq更新成 1,所以说即便这里minFreq变了,我们也不需要管它。

下面来实现increaseFreq函数:

privatevoidincreaseFreq(intkey){
intfreq=keyToFreq.get(key);
/*更新KF表*/
keyToFreq.put(key,freq+1);
/*更新FK表*/
//将key从freq对应的列表中删除
freqToKeys.get(freq).remove(key);
//将key加入freq+1对应的列表中
freqToKeys.putIfAbsent(freq+1,newLinkedHashSet<>());
freqToKeys.get(freq+1).add(key);
//如果freq对应的列表空了,移除这个freq
if(freqToKeys.get(freq).isEmpty()){
freqToKeys.remove(freq);
//如果这个freq恰好是minFreq,更新minFreq
if(freq==this.minFreq){
this.minFreq++;
}
}
}

更新某个key的freq肯定会涉及FK表和KF表,所以我们分别更新这两个表就行了。

和之前类似,当FK表中freq对应的列表被删空后,需要删除FK表中freq这个映射。如果这个freq恰好是minFreq,说明minFreq变量需要更新。

能不能快速找到当前的minFreq呢?这里是可以的,因为我们刚才把key的freq加了 1 嘛,所以minFreq也加 1 就行了。

至此,经过层层拆解,LFU 算法就完成了。

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信