全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 通信网络 >

纹理特征分析及特征量计算

时间:2009-03-01 17:48

人气:

作者:admin

标签: 计算 

导读:纹理特征分析及特征量计算-纹理特征分析及特征量计算本文采取的系统结构如图1所示,所需要分类的图像经过预处理,所以不涉及图像预处理过程。...

纹理特征分析及特征量计算

本文采取的系统结构如图1所示,所需要分类的图像经过预处理,所以不涉及图像预处理过程。

纹理特征描述了在图像中反复出现的局部模式和排列规则,反映宏观意义上灰度变化的规律,图像局部区域的纹理特征是识别客体的主要依据之一。

灰度共生矩阵表示位置相距(,)灰度分别为h和k的像素点对联合出现的频率分布xΔyΔ[6]。假设把图像指定区域的灰度分为N级,则该区域的灰度共生矩阵M(xΔ,yΔ)为一个N×N矩阵,其元素M(h,k)是相距(xΔ,yΔ)且灰度分别为h档和k档的像素点对出现的次数再除以M中所有(xΔ,yΔ)点对数之和,其中h, k=1, 2, …, N。
SAR图像的灰度共生矩阵反映了图像灰度方向、相邻间隔、变化幅度的综合信息,是分析图像的局部模式和其排列规则的基础,据此可进一步提取描述图像纹理的一系列特征。常用的统计量如下[7]:
1) 角二阶矩或能量为

差方差与和方差有相似性,只是将共生矩阵中横、纵坐标值之差的绝对值为n的值之和作为密度。
9) 差熵为

合成孔径雷达图像目标分类研究

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信