全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > PCB设计 >

射频电路设计四大基础特性

时间:2023-05-08 09:59

人气:

作者:admin

标签: 射频电路  接收器  PCB设计 

导读:射频电路设计四大基础特性-接收器必须对小的信号很灵敏,即使有大的干扰信号(阻挡物)存在时。这种情况出现在尝试接收一个微弱或远距的发射信号,而其附近有强大的发射器在相...

接收器必须对小的信号很灵敏,即使有大的干扰信号(阻挡物)存在时。这种情况出现在尝试接收一个微弱或远距的发射信号,而其附近有强大的发射器在相邻频道中广播。

干扰信号可能比期待信号大 60~70 dB,且可以在接收器的输入阶段以大量覆盖的方式,或使接收器在输入阶段产生过多的噪声量,来阻断正常信号的接收。

如果接收器在输入阶段,被干扰源驱使进入非线性的区域,上述的那两个问题就会发生。为避免这些问题,接收器的前端必须是非常线性的。

因此,“线性”也是 PCB 设计接收器时的一个重要考虑因素。由于接收器是窄频电路,所以非线性是以测量“交调失真(inte rmodulati on distorTI on)”来统计的。这牵涉到利用两个频率相近,并位于中心频带内(in band)的正弦波或余弦波来驱动输入信号,然后再测量其交互调变的乘积。

大体而言,SPI CE 是一种耗时耗成本的仿真软件,因为它必须执行许多次的循环运算以后,才能得到所需要的频率分辨率,以了解失真的情形。

射频电路之小的输入信号

接收器必须很灵敏地侦测到小的输入信号。一般而言,接收器的输入功率可以小到 1 μV。接收器的灵敏度被它的输入电路所产生的噪声所限制。

因此,噪声是 PCB 设计接收器时的一个重要考虑因素。而且,具备以仿真工具来预测噪声的能力是不可或缺的。

典型的超外差(superheterodyne)接收器接收到的信号先经过滤波,再以低噪声放大器(LNA)将输入信号放大。然后利用第一个本地振荡器(LO)与此信号混合,以使此信号转换成中频(IF)。

前端(front-end)电路的噪声效能主要取决于 LNA、混合器(mixer)和 LO。虽然使用传统的 SPICE 噪声分析,可以寻找到 LNA 的噪声,但对于混合器和 LO 而言,它却是无用的,因为在这些区块中的噪声,会被很大的 LO 信号严重地影响。

小的输入信号要求接收器必须具有极大的放大功能,通常需要 120 dB 这么高的增益。在这么高的增益下,任何自输出端耦合(couple)回到输入端的信号都可能产生问题。

使用超外差接收器架构的重要原因是,它可以将增益分布在数个频率里,以减少耦合的机率。这也使得第一个 LO 的频率与输入信号的频率不同,可以防止大的干扰信号“污染 ”到小的输入信号。

因为不同的理由,在一些无线通讯系统中,直接转换(direct convers ion)或内差(homodyne)架构可以取代超外差架构。在此架构中,射频输入信号是在单一步骤下直接转换成基频,因此,大部份的增益都在基频中,而且 LO 与输入信号的频率相同。

在这种情况下,必须了解少量耦合的影响力,并且必须建立起“杂散信号路径(stray signal path)”的详细模型,譬如:穿过基板(substrate)的耦合、封装脚位与焊线(bondwire)之间的耦合、和穿过电源线的耦合。

射频电路之相邻频道的干扰

失真也在发射器中扮演着重要的角色。发射器在输出电路所产生的非线性,可能使传送信号的频宽散布于相邻的频道中。这种现象称为“频谱的再成长(spectral regrowth)”。

在信号到达发射器的功率放大器(PA)之前,其频宽被限制着;但在 PA 内的“交调失真”会导致频宽再次增加。

如果频宽增加的太多,发射器将无法符合其相邻频道的功率要求。当传送数字调变信号时,实际上,是无法用 SPICE 来预测频谱的再成长。

因为大约有 1000 个数字符号(symbol)的传送作业必须被仿真,以求得代表性的频谱,并且还需要结合高频率的载波,这些将使 SPICE 的瞬态分析变得不切实际。





审核编辑:刘清

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信