全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > RF/无线技术 >

Reference Design of a 1-Wire B

时间:2009-11-16 16:14

人气:

作者:admin

标签: Wire 

导读:Reference Design of a 1-Wire B-Reference Design of a 1-Wire Bidirectional Voltage-Level Translator for 1.8V to 5V Abstract: Designers need open-drain logic to run at 1.8V at the 1-Wire master IO. Most 1-Wire slave devices can...

Reference Design of a 1-Wire Bidirectional Voltage-Level Translator for 1.8V to 5V

Abstract: Designers need open-drain logic to run at 1.8V at the 1-Wire master IO. Most 1-Wire slave devices cannot run at 1.8V. This application note presents an RD (reference design) of a circuit that translates from a 1.8V 1-Wire master to a 5V 1-Wire slave device. The RD is used for driving typical 1-Wire slave devices. The MAX3394E voltage-level translator is featured in the design.

Introduction

Devices such as FPGAs, microprocessors, the DS2482-100, and DS2480B are examples of 1-Wire master devices. The 1-Wire/iButton® slave devices are manufactured by Maxim and comprise an extensive family of parts that typically operate from 2.8V to 5.25V. The 1-Wire masters and slave devices have traditionally been 5V open-drain logic in the past.

Today designers need open-drain logic to run at 1.8V at the 1-Wire master IO. While most 1-Wire slave devices can run safely at 5V, most of those same devices cannot run at 1.8V. A bidirectional voltage-level translator circuit is needed to overcome this limitation. This RD (reference design) features the Maxim® MAX3394E, which is a bidirectional voltage-level translator for these applications.

Voltage-Level Translator

The MAX3394E is a dual-level translator available in an 8-pin, 3mm x 3mm TDFN package. It is ideal for driving high-capacitive loads, thanks to its internal slew-rate enhancement circuitry. 1-Wire slave devices often have capacitive loading greater than 500pF. The MAX3394E's VCC I/O pins are protected to ±15kV HBM (Human Body Model), which protects the 1-Wire master. The 1-Wire bus architectures often interface to the external world, making HBM essential. However, it is recommended that a DS9503P be added as ESD protection for the pullup resistor (R3), the optional strong pullup circuitry, and the 1-Wire slave device.

Application Circuit

The circuit in Figure 1 shows the MAX3394E used to perform bidirectional 1.8V to 5V voltage-level translation in an open-drain system.

Figure 1. Schematic of 1-Wire bidirectional voltage level translation from 1.8V to 5V. Note that the pins I/O VL and I/O VCC have a typical 10kΩ internal pullup.
Figure 1. Schematic of 1-Wire bidirectional voltage level translation from 1.8V to 5V. Note that the pins I/O VL and I/O VCC have a typical 10kΩ internal pullup.

The BOM (bill of materials) for this reference design is given in Table 1.

Table 1. Bill of Materials
Item Quantity Reference Part Manufacturer Part Number
1 1 C1 1.0µF 0402 Panasonic ECJ-0EB0J105M
2 2 C2, C3 0.1µF 0201 Panasonic ECJ-ZEB0J104K
3 1 Q1 BSS84-7-F Diodes, Inc/Zetex BSS84-7-F
4 1 R1 33Ω 0201 Panasonic ERJ-1GEJ330C
5 1 R2 10kΩ 0402 Panasonic ERJ-2RKF1002X
6 1 R3 1kΩ 0402 Panasonic ERJ-2RKF1001X
7 1 R4 2.2kΩ 0402 Panasonic ERJ-2RKF2201X
8 2 CH1, CH2 TEST POINT N/A N/A
9 1 U1 MAX3394E Maxim MAX3394EETA+

Waveform Measurements/Test Results

The test results in Figures 2 through 5 were generated from the board built for evaluating the circuit.

Setup:
  • VL = 1.8V
  • VCC = 5.0V
  • CH1: 1-Wire master (OW_MASTER)
  • CH2: DS1920 (OW_SLAVE)
  • OW_SLAVE wire length: 2.4m, max.
  • Test results did not include the optional strong pullup circuitry in Figure 1.
  • Room temperature measurements only

Figure 2. The scope plot of a 1-Wire Reset shows the performance of the MAX3394E with presence pulse amplitude of no more than 250mV, lower than a typical 1-Wire master VIL maximum of 0.4V.


Figure 3. The scope plot of a 1-Wire Write, one timeslot with a clean tLOW1 < 15µs.


Figure 4. The scope plot of a 1-Wire Write, zero timeslot with 60µs < tLOW0 < 120µs.


Figure 5. The scope plot of a 1-Wire Read, zero timeslot with an active 1-Wire slave open-drain return and lower than a typical 1-Wire master VIL maximum of 0.4V.

Conclusion

This RD for 1.8V to 5V 1-Wire bidirectional logic-level translation drives typical 1-Wire slave devices. The design was built and then tested. The circuit schematic, BOM, and typical waveforms have been presented.
温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信