网站首页

人工智能P2P分享搜索全网发布信息网站地图标签大全

当前位置:诺佳网 > 电子/半导体 > 模拟技术 >

聊一聊门函数/脉冲函数的时频特性

时间:2023-05-25 11:02

人气:

作者:admin

标签: 一聊门      脉冲  函数 

导读:左图是个门函数,宽度为τ,高度为1,自变量t。...

今天聊一聊矩形脉冲,谈他只因为常见,工作中常用。

左图是个门函数,宽度为τ,高度为1,自变量t。

右图是门函数经过傅里叶变换的频谱密度函数

F(jw),自变量w。

两种变换对等,包含信号的所有信息量,仅仅是一种数学的变换域。

图片

其傅里叶变换对如下式:

图片

case1:

我们把门宽度缩小,即τ→0,或者很小很小,获得一个尖脉冲。(研究它的目的是尖峰噪声,都是小的脉冲,振荡的,时间宽度小的,尖刺的…)

图片

长的很像冲激函数吧~就高度不一样嘛

再看看冲激函数的FT,正好是1。

图片

我们把门函数的FT即τSa(wτ/2),令τ趋于0,数无形时少直觉,右图一看,第一过零点直接趋于无穷大,Sa()函数中间凸起来的区域一条直线~不就长得像1吗?

case2:

我们把门宽度放大,即τ→很大,或者很大很大,获得一个直流信号。

再看看直流信号的FT,是个冲激。

图片

我们把门函数的FT即τSa(wτ/2),如果忽略前面的系数τ,并令τ趋于+∞。数无形时少直觉,右图一看,第一过零点直接趋于无穷小,Sa()函数中间凸起来的区域逼近于0~不就长得像冲激函数吗?

图片

case3:

由尺度变换公式

图片

时域压缩信号,将会使得频谱密度函数频率轴伸展,信号的频率分量会 向高频扩散

时域扩展信号,将会使得频谱密度函数频率轴收缩,信号的频率分量会 向低频聚集

或者说:对于一个脉冲信号,信号越窄,频谱密度函数 收敛性变差 ,Sa()函数第一过零点带宽往后推,幅度较高的频率分量往后搬移。

以后应当有认知:

  1. 尖峰噪声具有高频特性,尖峰越窄,信号带宽越高。
  2. 时域观察即是尖峰噪声振荡周期/脉冲宽度。
  3. 频域观察即使频谱密度函数的分布情况。

REF ADI一张图

图片

  • 上图DCDC噪声,开关噪声脉冲窄,能量小,信号带宽高。
  • 纹波噪声,振荡周期T大,脉宽大,能量较开关噪声大,信号带宽等于1/T。
温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信