全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 嵌入式技术 >

transformer原理解析

时间:2023-09-06 14:44

人气:

作者:admin

标签: 函数  Transformer 

导读:这些embedding可以使用谷歌Word2vec (单词的矢量表示) 找到。在我们的数值示例中,我们将假设每个单词的embedding向量填充有 (0和1) 之间的随机值。...

transformer架构可能看起来很恐怖,您也可能在YouTube或博客中看到了各种解释。但是,在我的博客中,我将通过提供一个全面的数学示例阐明它的原理。通过这样做,我希望简化对transformer架构的理解。 那就开始吧!
wKgZomT4H_2AI5HhAAH2McYogm4348.png

Inputs and Positional Encoding

让我们解决最初的部分,在那里我们将确定我们的输入并计算它们的位置编码。

bba63ee2-4c68-11ee-a25d-92fbcf53809c.png

Step 1 (Defining the data)

第一步是定义我们的数据集(语料库)。

bbcd014e-4c68-11ee-a25d-92fbcf53809c.png

在我们的数据集中,有3个句子(对话) 取自《权力的游戏》电视剧。尽管这个数据集看起来很小,但它已经足以帮助我们理解之后的数学公式。

Step 2 (Finding the Vocab Size)

为了确定词汇量,我们需要确定数据集中的唯一单词总数。这对于编码(即将数据转换为数字) 至关重要。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.pngbbf41392-4c68-11ee-a25d-92fbcf53809c.png   其中N是所有单词的列表,并且每个单词都是单个token,我们将把我们的数据集分解为一个token列表,表示为N。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bc1fe6e8-4c68-11ee-a25d-92fbcf53809c.png

获得token列表(表示为N) 后,我们可以应用公式来计算词汇量。 具体公式原理如下: bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bc4d239c-4c68-11ee-a25d-92fbcf53809c.png

使用set操作有助于删除重复项,然后我们可以计算唯一的单词以确定词汇量。因此,词汇量为23,因为给定列表中有23个独特的单词。

Step 3 (Encoding and Embedding)

接下来为数据集的每个唯一单词分配一个整数作为编号。

bc7af77c-4c68-11ee-a25d-92fbcf53809c.png

bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png 在对我们的整个数据集进行编码之后,是时候选择我们的输入了。我们将从语料库中选择一个句子以开始:   “When you play game of thrones” bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bcb20c1c-4c68-11ee-a25d-92fbcf53809c.png

作为输入传递的每个字将被表示为一个编码,并且每个对应的整数值将有一个关联的embedding联系到它。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bcd79090-4c68-11ee-a25d-92fbcf53809c.png

这些embedding可以使用谷歌Word2vec (单词的矢量表示) 找到。在我们的数值示例中,我们将假设每个单词的embedding向量填充有(0和1) 之间的随机值。

此外,原始论文使用embedding向量的512维度,我们将考虑一个非常小的维度,即5作为数值示例。

bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bd03234a-4c68-11ee-a25d-92fbcf53809c.png

现在,每个单词embedding都由5维的embedding向量表示,并使用Excel函数RAND() 用随机数填充值。

Step 4 (Positional Embedding)

让我们考虑第一个单词,即“when”,并为其计算位置embedding向量。位置embedding有两个公式:

bd2df584-4c68-11ee-a25d-92fbcf53809c.png

第一个单词“when”的POS值将为零,因为它对应于序列的起始索引。此外,i的值(取决于是偶数还是奇数) 决定了用于计算PE值的公式。维度值表示embedding向量的维度,在我们的情形下,它是5。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bd56b302-4c68-11ee-a25d-92fbcf53809c.png

继续计算位置embedding,我们将为下一个单词“you” 分配pos值1,并继续为序列中的每个后续单词递增pos值。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bdb83dac-4c68-11ee-a25d-92fbcf53809c.png

找到位置embedding后,我们可以将其与原始单词embedding联系起来。

bdcd7744-4c68-11ee-a25d-92fbcf53809c.png

bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png 我们得到的结果向量是e1+p1,e2+p2,e3+p3等诸如此类的embedding和。  

be170b52-4c68-11ee-a25d-92fbcf53809c.png

bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png Transformer架构的初始部分的输出将在之后用作编码器的输入。  

编码器

在编码器中,我们执行复杂的操作,涉及查询(query),键(key)和值(value)的矩阵。这些操作对于转换输入数据和提取有意义的表示形式至关重要。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

be2dc78e-4c68-11ee-a25d-92fbcf53809c.png

在多头注意力(multi-head attention)机制内部,单个注意层由几个关键组件组成。这些组件包括: bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

be4f758c-4c68-11ee-a25d-92fbcf53809c.png

请注意,黄色框代表单头注意力机制。让它成为多头注意力机制的是多个黄色盒子的叠加。出于示例的考虑,我们将仅考虑一个单头注意力机制,如上图所示。

Step 1 (Performing Single Head Attention)

注意力层有三个输入

Query

Key

Value

bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

be8336e2-4c68-11ee-a25d-92fbcf53809c.png

在上面提供的图中,三个输入矩阵(粉红色矩阵) 表示从将位置embedding添加到单词embedding矩阵的上一步获得的转置输出。另一方面,线性权重矩阵(黄色,蓝色和红色) 表示注意力机制中使用的权重。这些矩阵的列可以具有任意数量的维数,但是行数必须与用于乘法的输入矩阵中的列数相同。在我们的例子中,我们将假设线性矩阵(黄色,蓝色和红色) 包含随机权重。这些权重通常是随机初始化的,然后在训练过程中通过反向传播和梯度下降等技术进行调整。所以让我们计算(Query, Key and Value metrices): bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bea157ee-4c68-11ee-a25d-92fbcf53809c.png

一旦我们在注意力机制中有了query, key, 和value矩阵,我们就继续进行额外的矩阵乘法。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.pngbbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bee1c0fe-4c68-11ee-a25d-92fbcf53809c.png

bee72df0-4c68-11ee-a25d-92fbcf53809c.png

bf38a914-4c68-11ee-a25d-92fbcf53809c.png

bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png现在,我们将结果矩阵与我们之前计算的值矩阵相乘: bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bf5daf5c-4c68-11ee-a25d-92fbcf53809c.png

如果我们有多个头部注意力,每个注意力都会产生一个维度为(6x3) 的矩阵,那么下一步就是将这些矩阵级联在一起。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bf9142b8-4c68-11ee-a25d-92fbcf53809c.png

在下一步中,我们将再次执行类似于用于获取query, key, 和value矩阵的过程的线性转换。此线性变换应用于从多个头部注意获得的级联矩阵。 bbe7bf8e-4c68-11ee-a25d-92fbcf53809c.png

bfb91e8c-4c68-11ee-a25d-92fbcf53809c.png

编辑:黄飞

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信