全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 嵌入式技术 >

什么是微分代数方程?Matlab求解微分代数方程

时间:2023-07-19 11:15

人气:

作者:admin

标签: 代数方程    微分  什么 

导读:微分代数方程是一类微分方程,其中一个或多个因变量导数未出现在方程中。...

什么是微分代数方程?

微分代数方程是一类微分方程,其中一个或多个因变量导数未出现在方程中。方程中出现的未包含其导数的变量称为代数变量,代数变量的存在意味着不能将这些方程记为显式形式 y′=f(t,y)。

ode15s 和 ode23t 求解器可以使用奇异质量矩阵 M(t,y)y′=f(t,y) 来解算微分指数为1的线性隐式问题,包括以下形式的半显式 DAE

y′0=f(t,y,z)

0 =g(t,y,z)

在此形式中,由于主对角线存在一个或多个零值,因此代数变量的存在会产生奇异质量矩阵。

图片

默认情况下,求解器会自动检验质量矩阵的奇异性,以检测 DAE 方程组。如果提前知道奇异性,则可将 odeset 的 MassSingular 选项设为 'yes'。对于 DAE,还可以使用 odeset 的 InitialSlope 属性为求解器提供 y′(0) 的初始条件估计值。

举个例子

图片

其中x1(0)=0.8;x2(0)=x3(0)=0.1;

1)方程写成DAE形式

图片

2)编程求解

%% 
clc
clear
close all
odefun = @(t,x)[-0.2*x(1)+x(2)*x(3)+0.3*x(1)*x(2);
                2*x(1)*x(2)-5*x(2)*x(3)-2*x(2)^2;
                x(1)+x(2)+x(3)-1]; %微分方程
M = [1 0 0;0 1 0;0 0 0]; % 质量矩阵
options=odeset('mass',M); % 定义mass属性
x0=[0.8;0.1;0.1];
[t,x]=ode15s(odefun,[0 10],x0,options);
figure
plot(t,x(:,1),t,x(:,2),t,x(:,3))
grid on
legend('x1','x2','x3')

图片

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信