全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 嵌入式技术 >

教你如何用两行代码搞定YOLOv8各种模型推理

时间:2023-06-18 11:50

人气:

作者:admin

标签: python  pyqt5  GPU 

导读:大家好,YOLOv8 框架本身提供的API函数是可以两行代码实现 YOLOv8 模型推理,这次我把这段代码封装成了一个类,只有40行代码左右,可以同时支持YOLOv8对象检测、实例分割、姿态评估模型...

前言

大家好,YOLOv8 框架本身提供的API函数是可以两行代码实现 YOLOv8 模型推理,这次我把这段代码封装成了一个类,只有40行代码左右,可以同时支持YOLOv8对象检测、实例分割、姿态评估模型的GPUCPU上推理演示。

40d31286-0c1b-11ee-962d-dac502259ad0.png

程序实现

使用PyQT5开发一个简单的YOLOv8 框架本身提供的API函数演示交互界面,支持从界面上选择模型文件、测试图像或者视频文件,点击开始推理 按钮就可以运行了,整个程序的界面如下:

40dd21ea-0c1b-11ee-962d-dac502259ad0.png

YOLOv8框架支持的函数推理会自动识别模型的类型是对象检测、实例分割、姿态评估中哪一种,有GPU支持的情况下,默认会使用GPU推理。

推理运行在一个单独的PyQT线程中,通过信号与槽机制实现推理结果返回与更新。实现的线程代码如下:

classInferenceThread(QtCore.QThread):
fire_stats_signal=QtCore.pyqtSignal(dict)

def__init__(self,settings):
super(InferenceThread,self).__init__()
self.settings=settings
self.detector=YOLOv8PtInference(settings)
self.input_image=settings.input_image

defrun(self):
ifself.detectorisNone:
return
ifself.input_image.endswith(".mp4"):
cap=cv.VideoCapture(self.input_image)
whileTrue:
ret,frame=cap.read()
ifretisTrue:
self.detector.infer_image(frame)
self.fire_stats_signal.emit({"result":frame})
else:
break
else:
frame=cv.imread(self.input_image)
self.detector.infer_image(frame)
self.fire_stats_signal.emit({"result":frame})
self.fire_stats_signal.emit({"done":"done"})
return
直接通过PT模型推理的好处有两点,一个是不需要写部署代码了,二是精度不会在模型转化中有细微损失了。特别适合Python开发者

对象检测 - 运行截图如下:

40f12b54-0c1b-11ee-962d-dac502259ad0.png

实例分割-运行截图如下:

40fb5426-0c1b-11ee-962d-dac502259ad0.png

姿态评估-运行截图如下:

410fc550-0c1b-11ee-962d-dac502259ad0.png






审核编辑:刘清

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信