全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 嵌入式技术 >

NPU和CPU对比运行速度有何不同?基于i.MX 8M Plus处

时间:2022-05-09 16:46

人气:

作者:admin

标签:

导读:参考 https://www.toradex.cn/blog/nxp-imx8ji-yueiq-kuang-jia-ce-shi-machine-learning IMX-MACHINE-LEARNING-UG.pdf   CPU和NPU图像分类 cd /usr/bin/tensoRFlow-lite-2.4.0/examples   CPU运行 ./label_image -m mobilenet_v1_1.0_224_quant.tf...

参考

https://www.toradex.cn/blog/nxp-imx8ji-yueiq-kuang-jia-ce-shi-machine-learning

IMX-MACHINE-LEARNING-UG.pdf


CPU和NPU图像分类

cd /usr/bin/tensoRFlow-lite-2.4.0/examples

CPU运行

./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt

INFO: Loaded model mobilenet_v1_1.0_224_quant.tflite

INFO: resolved reporter

INFO: invoked

INFO: averagetime:50.66ms

INFO: 0.780392: 653 military unIForm

INFO: 0.105882: 907 Windsor tie

INFO: 0.0156863: 458 bow tie

INFO: 0.0117647: 466 bulletproof vest

INFO: 0.00784314: 835 suit


GPU/NPU加速运行

./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt-a 1

INFO: Loaded model mobilenet_v1_1.0_224_quant.tflite

INFO: resolved reporter

INFO: Created TensorFlow Lite delegate for NNAPI.

INFO: Applied NNAPI delegate.

INFO: invoked

INFO: average time:2.775ms

INFO: 0.768627: 653 military uniform

INFO: 0.105882: 907 Windsor tie

INFO: 0.0196078: 458 bow tie

INFO: 0.0117647: 466 bulletproof vest

INFO: 0.00784314: 835 suit

USE_GPU_INFERENCE=0./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l labels.txt--external_delegate_path=/usr/lib/libvx_delegate.so

Python运行

python3 label_image.py

INFO: Created TensorFlow Lite delegate for NNAPI.

Applied NNAPI delegate.

WARM-up time:6628.5ms

Inference time: 2.9 ms

0.870588: military uniform

0.031373: Windsor tie

0.011765: mortarboard

0.007843: bow tie

0.007843: bulletproof vest


基准测试CPU单核运行

./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite

STARTING!

Log parameter values verbosely: [0]

Graph: [mobilenet_v1_1.0_224_quant.tflite]

Loaded model mobilenet_v1_1.0_224_quant.tflite

The input model file size (MB): 4.27635

Initialized session in 15.076ms.

Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.

count=4 first=166743 curr=161124 min=161054 max=166743avg=162728std=2347

Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.

count=50 first=161039 curr=161030 min=160877 max=161292 avg=161039std=94

Inference timings in us: Init: 15076, First inference: 166743, Warmup (avg):162728, Inference (avg):161039

Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.

Peak memory footprint (MB): init=2.65234 overall=9.00391

CPU多核运行

./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --num_threads=4

4核--num_threads设置为4性能最好

STARTING!

Log parameter values verbosely: [0]

Num threads: [4]

Graph: [mobilenet_v1_1.0_224_quant.tflite]

#threads used for CPU inference: [4]

Loaded model mobilenet_v1_1.0_224_quant.tflite

The input model file size (MB): 4.27635

Initialized session in 2.536ms.

Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.

count=11 first=48722 curr=44756 min=44597 max=49397 avg=45518.9 std=1679

Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.

count=50 first=44678 curr=44591 min=44590 max=50798avg=44965.2std=1170

Inference timings in us: Init: 2536, First inference: 48722, Warmup (avg):45518.9, Inference (avg):44965.2

Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.

Peak memory footprint (MB): init=1.38281 overall=8.69922

GPU/NPU加速

./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --num_threads=4 --use_nnapi=true

STARTING!

Log parameter values verbosely: [0]

Num threads: [4]

Graph: [mobilenet_v1_1.0_224_quant.tflite]

#threads used for CPU inference: [4]

Use NNAPI: [1]

NNAPI accelerators available: [vsi-npu]

Loaded model mobilenet_v1_1.0_224_quant.tflite

INFO: Created TensorFlow Lite delegate for NNAPI.

Explicitly applied NNAPI delegate, and the model graph will be completely executed by the delegate.

The input model file size (MB): 4.27635

Initialized session in 3.968ms.

Running benchmark for at least 1 iterations and at least 0.5 seconds but terminate if exceeding 150 seconds.

count=1 curr=6611085

Running benchmark for at least 50 iterations and at least 1 seconds but terminate if exceeding 150 seconds.

count=369 first=2715 curr=2623 min=2572 max=2776avg=2634.2std=20

Inference timings in us: Init: 3968, First inference: 6611085, Warmup (avg): 6.61108e+06, Inference (avg): 2634.2

Note: as the benchmark tool itself affects memory footprint, the following is only APPROXIMATE to the actual memory footprint of the model at runtime. Take the information at your discretion.

Peak memory footprint (MB): init=2.42188 overall=28.4062

结果对比

CPU运行CPU多核多线程NPU加速
图像分类50.66 ms2.775 ms
基准测试161039uS44965.2uS2634.2uS

OpenCV DNN

cd /usr/share/OpenCV/samples/bin

./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

下载模型

cd /usr/share/opencv4/testdata/dnn/

python3 download_models_basic.py

图像分类

cd /usr/share/OpenCV/samples/bin

./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

e2a1f644-c70d-11ec-8521-dac502259ad0.jpg


文件浏览器地址栏输入

ftp://ftp.toradex.cn/Linux/i.MX8/eIQ/OpenCV/Image_Classification.zip

下载文件

解压得到文件models.yml和squeezenet_v1.1.caffemodel

cd /usr/share/OpenCV/samples/bin

将文件导入到开发板的/usr/share/OpenCV/samples/bin目录下

$cp/usr/share/opencv4/testdata/dnn/dog416.png /usr/share/OpenCV/samples/bin/
$cp/usr/share/opencv4/testdata/dnn/squeezenet_v1.1.prototxt /usr/share/OpenCV/samples/bin/
$cp/usr/share/OpenCV/samples/data/dnn/classification_classes_ILSVRC2012.txt /usr/share/OpenCV/samples/bin/
$ cd /usr/share/OpenCV/samples/bin/

图片输入

./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

报错

root@myd-jx8mp:/usr/share/OpenCV/samples/bin# ./example_dnn_classification --input=dog416.png --zoo=model.yml squeezenet

ERRORS:

Missing parameter: 'mean'

Missing parameter: 'rgb'

加入参数--rgb 和 --mean=1

还是报错加入参数--mode

root@myd-jx8mp:/usr/share/OpenCV/samples/bin# ./example_dnn_classification --rgb --mean=1 --input=dog416.png --zoo=models.yml squeezenet

[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (898) open OpenCV | GStreamer warning: unable to query duration of stream

[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (935) open OpenCV | GStreamer warning: Cannot query video position: status=1, value=0, duration=-1

root@myd-jx8mp:/usr/share/OpenCV/samples/bin#./example_dnn_classification --rgb --mean=1 --input=dog416.png --zoo=models.yml squeezenet --mode

[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (898) open OpenCV | GStreamer warning: unable to query duration of stream

[WARN:0]global/usr/src/debug/opencv/4.4.0.imx-r0/git/modules/videoio/src/cap_gstreamer.cpp (935) open OpenCV | GStreamer warning: Cannot query video position: status=1, value=0, duration=-1

视频输入

./example_dnn_classification --device=2 --zoo=models.yml squeezenet

问题

如果testdata目录下没有文件,则查找下

lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto$ find . -name "dog416.png"

./build-xwayland/tmp/work/cortexa53-crypto-mx8mp-poky-linux/opencv/4.4.0.imx-r0/extra/testdata/dnn/dog416.png

再将相应的文件复制到开发板

cd./build-xwayland/tmp/work/cortexa53-crypto-mx8mp-poky-linux/opencv/4.4.0.imx-r0/extra/testdata/

tar -cvf /mnt/e/dnn.tar ./dnn/

cd/usr/share/opencv4/testdata目录不存在则先创建

rz导入dnn.tar

解压tar -xvf dnn.tar

terminate calLEDafter throwing an instance of 'cv::Exception'

what():OpenCV(4.4.0)/usr/src/debug/opencv/4.4.0.imx-r0/git/samples/dnn/classification.cpperrorAssertion failed) !model.empty() in function 'main'

Aborted

lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto/build-xwayland$ find . -name classification.cpp

lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto/build-xwayland$ cp ./tmp/work/cortexa53-crypto-mx8mp-poky-linux/opencv/4.4.0.imx-r0/packages-split/opencv-src/usr/src/debug/opencv/4.4.0.imx-r0/git/samples/dnn/classification.cpp /mnt/e

lhj@DESKTOP-BINN7F8:~/myd-jx8mp-yocto/build-xwayland$

YOLO对象检测

cd /usr/share/OpenCV/samples/bin

./example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392 --input=dog416.png --rgb --zoo=models.yml yolo

e2ba8f74-c70d-11ec-8521-dac502259ad0.jpg


https://pjreddie.com/darknet/yolo/下载cfg和weights文件

cd/usr/share/OpenCV/samples/bin/

导入上面下载的文件

cp/usr/share/OpenCV/samples/data/dnn/object_detection_classes_yolov3.txt/usr/share/OpenCV/samples/bin/

cp/usr/share/opencv4/testdata/dnn/yolov3.cfg/usr/share/OpenCV/samples/bin/./example_dnn_object_detection --width=1024 --height=1024 --scale=0.00392 --input=dog416.png --rgb --zoo=models.yml yolo

OpenCV经典机器学

cd /usr/share/OpenCV/samples/bin

线性SVM

./example_tutorial_introduction_to_svm

e2d1263a-c70d-11ec-8521-dac502259ad0.jpg

非线性SVM

./example_tutorial_non_linear_svms

e2e33c80-c70d-11ec-8521-dac502259ad0.jpg

PCA分析

./example_tutorial_introduction_to_pca ../data/pca_test1.jpg

e2fa2152-c70d-11ec-8521-dac502259ad0.jpg

逻辑回归

./example_cpp_logistic_regression

e310c22c-c70d-11ec-8521-dac502259ad0.jpg

e323f9c8-c70d-11ec-8521-dac502259ad0.jpg

e3371f58-c70d-11ec-8521-dac502259ad0.jpg

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信