全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 嵌入式技术 >

pandas筛选数据的8个小技巧

时间:2021-09-26 11:04

人气:

作者:admin

标签: SQL  数据  python 

导读:  日常用 Python 做数据分析最常用到的就是查询筛选了,按各种条件、各种维度以及组合挑出我们想要的数据,以方便我们分析挖掘。东哥总结了日常查询和筛选常用的种骚操作,供各位...

日常用Python做数据分析最常用到的就是查询筛选了,按各种条件、各种维度以及组合挑出我们想要的数据,以方便我们分析挖掘。东哥总结了日常查询和筛选常用的种骚操作,供各位学习参考。本文采用sklearnboston数据举例介绍。

fromsklearnimportdatasets
importpandasaspd

boston=datasets.load_boston()
df=pd.DataFrame(boston.data,columns=boston.feature_names)

9f72463a-1114-11ec-8fb8-12bb97331649.png

1. []

第一种是最快捷方便的,直接在dataframe的[]中写筛选的条件或者组合条件。比如下面,想要筛选出大于NOX这变量平均值的所有数据,然后按NOX降序排序。

df[df['NOX']>df['NOX'].mean()].sort_values(by='NOX',ascending=False).head()

9f8862e4-1114-11ec-8fb8-12bb97331649.png

当然,也可以使用组合条件,条件之间使用逻辑符号& |等。比如下面这个例子除了上面条件外再加上且条件CHAS为1,注意逻辑符号分开的条件要用()隔开。

df[(df['NOX']>df['NOX'].mean())&(df['CHAS']==1)].sort_values(by='NOX',ascending=False).head()

9f96c9ba-1114-11ec-8fb8-12bb97331649.png

2. loc/iloc

[]之外,loc/iloc应该是最常用的两种查询方法了。loc标签值(列名和行索引取值)访问,iloc按数字索引访问,均支持单值访问或切片查询。除了可以像[]按条件筛选数据以外,loc还可以指定返回的列变量,**从行和列两个维度筛选。**比如下面这个例子,按条件筛选出数据,并筛选出指定变量,然后赋值。

df.loc[(df['NOX']>df['NOX'].mean()),['CHAS']]=2

9fae84a6-1114-11ec-8fb8-12bb97331649.png

3. isin

上面我们筛选条件< > == !=都是个范围,但很多时候是需要锁定某些具体的值的,这时候就需要isin了。比如我们要限定NOX取值只能为0.538,0.713,0.437中时。

df.loc[df['NOX'].isin([0.538,0.713,0.437]),:].sample(5)

9fbd671e-1114-11ec-8fb8-12bb97331649.png

当然,也可以做取反操作,在筛选条件前加~符号即可。

df.loc[~df['NOX'].isin([0.538,0.713,0.437]),:].sample(5)

9fcf1112-1114-11ec-8fb8-12bb97331649.png

4. str.contains

上面的举例都是数值大小比较的筛选条件,除数值以外当然也有字符串的查询需求pandas里实现字符串的模糊筛选,可以用.str.contains()来实现,有点像在SQL语句里用的是like。下面利用titanic的数据举例,筛选出人名中包含Mrs或者Lily的数据,|或逻辑符号在引号内。

train.loc[train['Name'].str.contains('Mrs|Lily'),:].head()

9fe358de-1114-11ec-8fb8-12bb97331649.png

.str.contains()中还可以设置正则化筛选逻辑。

  • case=True:使用case指定区分大小写
  • na=True:就表示把有NAN的转换为布尔值True
  • flags=re.IGNORECASE:标志传递到re模块,例如re.IGNORECASE
  • regex=True:regex :如果为True,则假定第一个字符串是正则表达式,否则还是字符串

5. where/mask

在SQL里,我们知道where的功能是要把满足条件的筛选出来。pandas中where也是筛选,但用法稍有不同。where接受的条件需要是布尔类型的,如果不满足匹配条件,就被赋值为默认的NaN或其他指定值。举例如下,将Sexmale当作筛选条件,cond就是一列布尔型的Series,非male的值就都被赋值为默认的NaN空值了。

cond=train['Sex']=='male'
train['Sex'].where(cond,inplace=True)
train.head()

9ff0217c-1114-11ec-8fb8-12bb97331649.png

也可以用other赋给指定值。

cond=train['Sex']=='male'
train['Sex'].where(cond,other='FEMALE',inplace=True)

9ffc2c10-1114-11ec-8fb8-12bb97331649.png

甚至还可以写组合条件。

train['quality']=''
traincond1=train['Sex']=='male'
cond2=train['Age']>25

train['quality'].where(cond1&cond2,other='低质量男性',inplace=True)

a00930cc-1114-11ec-8fb8-12bb97331649.png

maskwhere是一对操作,与where正好反过来。

train['quality'].mask(cond1&cond2,other='低质量男性',inplace=True)

a0174b8a-1114-11ec-8fb8-12bb97331649.png

6. query

这是一种非常优雅的筛选数据方式。所有的筛选操作都在''之内完成。

#常用方式
train[train.Age>25]
#query方式
train.query('Age>25')

上面的两种方式效果上是一样的。再比如复杂点的,加入上面的str.contains用法的组合条件,注意条件里有''时,两边要用""包住。

train.query("Name.str.contains('William')&Age>25")

a02756e2-1114-11ec-8fb8-12bb97331649.png

query里还可以通过@来设定变量。

name='William'
train.query("Name.str.contains(@name)")

7. filter

filter是另外一个独特的筛选功能。filter不筛选具体数据,而是筛选特定的行或列。它支持三种筛选方式:

  • items:固定列名
  • regex:正则表达式
  • like:以及模糊查询
  • axis:控制是行index或列columns的查询

下面举例介绍下。

train.filter(items=['Age','Sex'])

train.filter(regex='S',axis=1)#列名包含S的

train.filter(like='2',axis=0)#索引中有2的

a052a612-1114-11ec-8fb8-12bb97331649.png

train.filter(regex='^2',axis=0).filter(like='S',axis=1)

8. any/all

any方法意思是,如果至少有一个值为True结果便为Trueall需要所有值为True结果才为True,比如下面这样。

>>train['Cabin'].all()
>>False
>>train['Cabin'].any()
>>True

anyall一般是需要和其它操作配合使用的,比如查看每列的空值情况。

train.isnull().any(axis=0)

a088f6b8-1114-11ec-8fb8-12bb97331649.png

再比如查看含有空值的行数。

>>>train.isnull().any(axis=1).sum()
>>>708
编辑:jq
温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信