全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 音视频/家电 >

优化音频桥系杆负载放大器-Optimizing Audio

时间:2009-05-05 11:15

人气:

作者:admin

标签: 音频  放大器 

导读:优化音频桥系杆负载放大器-Optimizing Audio-Abstract: This audio bridge-tied load (BTL) amplifier application note describes a unique architecture that minimizes the differential output distortion and noise (THD+N)....
Abstract: This audio bridge-tied load (BTL) amplifier application note describes a unique architecture that minimizes the differential output distortion and noise (THD+N).



免费注册参加在线研讨会,学习如何分析、测量并最终解决音频系统的设计问题 (English only) 。
Low-voltage systems driving loudspeakers often employ a bridged-amplifier configuration that effectively doubles the voltage swing at the transducer (speaker). In a typical bridge-amplifier circuit (Figure 1), an AC-coupled inverting stage with gain drives one side of the speaker. It also drives a second unity-gain inverting amplifier, which drives the other side of the speaker.

Figure 1. This conventional bridged amplifier features two amplifiers in tandem.
Figure 1. This conventional bridged amplifier features two amplifiers in tandem.

Bridged amplifiers usually incorporate a matched pair of amplifiers, but the first amplifier dominates overall performance because its output noise and distortion are replicated in the second amplifier. You can eliminate this drawback by placing the two amplifiers in a non-cascaded configuration, in which one is inverting and the other in non-inverting (Figure 2). Both amplify the same input signal, so neither one reproduces noise, distortion, or clipping introduced by the other.

Figure 2. This circuit optimizes the Figure 1 configuration by apportioning gain between the two amplifiers.
Figure 2. This circuit optimizes the Figure 1 configuration by apportioning gain between the two amplifiers.

As a key improvement in Figure 2, DC bias for the non-inverting circuit is derived from the inverting amplifier's source resistor. (Bias is required because the input is AC coupled). Using the other amplifier's source resistor as a bias source lowers the component count and eliminates signal injection into the high-impedance bias source (VCC/2, applied to the top amplifier's non-inverting input).

Another advantage in Figure 2 is the elimination of DC gain in the non-inverting amplifier. For the circuit shown, C2 sets the -3dB point at half the input cutoff frequency, and R1/C1 sets the input highpass cutoff frequency at 100Hz.

A similar version of this article appeared in the November 19, 2001 issue of Electronic Design magazine.


温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信