全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 处理器/DSP >

STM32也能轻松跑Linux了!米尔STM32MP135核心板开发板

时间:2023-07-01 15:53

人气:

作者:admin

标签: LI  St  单片机  STM32  开发板 

导读:米尔基于STM32MP135核心板主控位STM32MP135处理器,搭载DDR3L内存、标配4GB eMMC / 256MB Nand FLASH,以及32KB EEPROM,接口类型为邮票孔148PIN,尺寸37mm x 39mm。...

上个月,意法半导体推出了新一代64位Cortex-A35内核,主频高达1.5GHz的STM32MP2x系列微处理器(MPU),这让STM32MP系列处理器又上了一个新的台阶。

最近,收到了一套米尔基于STM32MP135核心板及开发板,首次接触STM32MPx处理器,体验了一下,感觉还不错。

pYYBAGSesYOAZqn_ACPtIu4BgY8581.png

STM32MP135与普通STM32单片机在性能、价格、应用场景等各方面都有差异。同时,STM32MP135并非局限于裸机、RTOS,而是定位于更高的Linux操作系统平台。

下面就结合【米尔基于STM32MP135核心板及开发板】给大家讲解一下STM32MP135强悍的性能以及开发入门等相关的内容。

硬件平台介绍

STM32MP135的开发板有很多,这里就以米尔的【米尔基于STM32MP135核心板及开发板】为例来给大家讲述。

1、STM32MP135处理器

STM32MP135内核采用Cortex-A7,主频高达1.0GHz,属于入门级的MPU,拥有超高的性价比。

2、米尔基于STM32MP135核心板

米尔基于STM32MP135核心板主控位STM32MP135处理器,搭载DDR3L内存、标配4GB eMMC / 256MB Nand FLASH,以及32KB EEPROM接口类型为邮票孔148PIN,尺寸37mm x 39mm。

pYYBAGSesZGAWaSDABZ5uD6psV0222.png

应用方向:充电桩电池管理、能源管理的方向。

米尔基于STM32MP135核心板介绍链接:

https://www.myir.cn/shows/110/57.html

3、米尔基于STM32MP135底板

米尔基于STM32MP135底板的外设资源以及接口就比较丰富和多样了。直接给出官方的信息:

poYBAGSesZiAAal9AADLCKPw2V0428.png

轻松入门

早在2019年,ST就推出了STM32MP1系列MPU,其强大的性能吸引了不少人的关注。但由于当时配套的开发资料以及生态不够完善,入手学习也难住了一大批人。
米尔设计这款米尔基于STM32MP135开发板时就考虑到了这个问题,在推出开发板的同时就推出了配套的开发资料。

poYBAGSesZ-ADjx5AAHiYPbg0lo924.png

在STM32MP135(MYD-YF13X)平台上跑Linux相比于普通STM32跑RTOS要复杂一点,需要具备一定的相关基础知识才行。
当然,米尔也针对新手提供了配套的手把手教程,能让你快速入门。

开发介绍

MYD-YF13X 搭载基于 Linux 5.15.67 版本内核的操作系统,提供了丰富的系统资源和其他软件资源。Linux 系统平台上有许多开源的系统构建框架,米尔核心板基于Yocto 构建和定制化开发。

1、开发环境

Linux开发主机:Debian, Ubuntu, RHEL等。

ST配套工具:STM32CubeProg、STM32CubeMX

安装米尔定制的SDK

2、构建开发板镜像

第1步:获取源码

可以从米尔提供链接获取源码。http://down.myir-tech.com/MYD-YF13X/

也可以从github在线获取源码。

PC$ mkdir $HOME/githubPC$ cd $HOME/githubPC$ repo init -u

https://github.com/MYiR-Dev/myir-st-manifest.git --no-clone-bundle --depth=1 -m

myir-stm32mp1-kirkstone.xml -b develop-yf13xPC$ repo sync

第2步:快速编译镜像

这里我们需要使用米尔提供的envsetup.sh 脚本进行环境变量的设置

PC$: DISTRO=openstlinux-weston MACHINE=myd-yf13x-emmc source

layers/meta-myir-st/scripts/envsetup.sh

然后,构建myir-image-full 镜像。注意,选择构建不同的系统镜像,需使用不同的 bitbake 命令参数(具体命令参数可以参看提供的文档)。

第3步:构建 SDK

米尔已经提供较完整的SDK 安装包,用户可直接使用。

3、烧录系统镜像

这里使用ST官方的STM32CubeProg 工具进行烧写,可以在Windows平台,也可以在Linux平台。提示:烧录的时间可能有点久,需要耐心等待一会儿。
当然,如果觉得慢,也可以用SD卡启动(烧写)。

4、修改板级支持包

这一节应该是相对比较重要的,也是相对比较难的,包括U-boot、 kernel等相关内容的编译与更新。

a.板载 TF-A 编译与更新

获取TF-A 源代码:

PC$ cd /home/workPC$ tar -jxvf MYiR-STM32-tf-a.tar.bz2PC$ cd MYiR-STM32-tf-a

配置和编译源代码:加载SDK 环境变量到当前 shell:

PC$ source

/opt/st/myir-yf13x/4.0.4-snapshot/environment-setup-cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi

进入源代码目录:

PC$ cd myir-st-arm-trusted-firmware

配置与编译源代码:

PC$ make -f $PWD/../Makefile.sdk all

以上是在独立的交叉编译环境下编译TF-A,也可以在 Yocto 项目下编译 TF-A。
更新TF-A:编译好之后,将 TF-A 镜像烧录进 Micro SD 卡,然后使用 dd 命令将镜像烧录到 SD 卡指定分区:

PC$: dd if=tf-a-myb-stm32mp135x-512m-sdcard.stm32 of=/dev/mmcblk0p1

conv=fdatasyncPC$: dd if=tf-a-myb-stm32mp135x-512m-sdcard.stm32 of=/dev/mmcblk0p2

conv=fdatasync

b.板载 u-boot 编译与更新

在独立的交叉编译环境下编译u-boot,和上面编译 TF-A 类似,也是和常规的编译u-boot 方法类似。

c.板载 Kernel 编译与更新

加载SDK 环境变量:

PC$ source

/opt/st/myir-yf13x/4.0.4-snapshot/environment-setup-cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi

配置内核:

PC$ make ARCH=arm O="$PWD/../build" myir_stm32mp135x_defconfig

编译内核:

PC$ make ARCH=arm uImage vmlinux dtbs LOADADDR=0xC2000040

O="$PWD/../build"PC$ make ARCH=arm modules O="$PWD/../build"

这个配置可能相对比较复杂,编译时间也相对较长,具体可以参看官方手册。

5、适配硬件平台

这一节就是芯片底层相关的适配(驱动),包括创建设备树、利用STM32CubeMX 配置GPIO、外设时钟等,以及配置自己用到的管脚。
然后,就是添加自己的一些应用了。到此,基本达到入门这一步了。

最后

如果你想从STM32单片机裸机、RTOS进阶到Linux,这款STM32MP135【MYC-YF13X开发板】是一个不错的选择。同时,也会用到一些熟悉的生态工具。

编辑:黄飞

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信