全球最实用的IT互联网信息网站!

AI人工智能P2P分享&下载搜索网页发布信息网站地图

当前位置:诺佳网 > 电子/半导体 > 模拟技术 >

一维与三维卷积流程及在机器视觉中的应用

时间:2018-05-03 09:08

人气:

作者:admin

标签: imagination  机器视觉  卷积 

导读:由于计算机视觉的大红大紫,二维卷积的用处范围最广。本文将介绍二维卷积、一维卷积与三维卷积的具体流程,并描述其各自的具体应用。...

由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。

1、二维卷积

图中的输入的数据维度为 14 × 14 ,过滤器大小为 5 × 5,二者做卷积,输出的数据维度为 10 × 10( 14 − 5 + 1 = 10 )。

上述内容没有引入channel的概念,也可以说channel的数量为1。如果将二维卷积中输入的channel的数量变为3,即输入的数据维度变为(14 × 14 × 3)。由于卷积操作中过滤器的 channel 数量必须与输入数据的channel数量相同,过滤器大小也变为 5 × 5 × 3 。在卷积的过程中,过滤器与数据在 channel 方向分别卷积,之后将卷积后的数值相加,即执行 10 × 10 次3个数值相加的操作,最终输出的数据维度为 10 × 10 。

以上都是在过滤器数量为1的情况下所进行的讨论。如果将过滤器的数量增加至16,即16个大小为10 × 10 × 3 的过滤器,最终输出的数据维度就变为10 × 10 × 16 。可以理解为分别执行每个过滤器的卷积操作,最后将每个卷积的输出在第三个维度(channel 维度)上进行拼接。

二维卷积常用于计算机视觉、图像处理领域。

2、一维卷积

图中的输入的数据维度为8,过滤器的维度为5。与二维卷积类似,卷积后输出的数据维度为8−5+1=48−5+1=4。

如果过滤器数量仍为1,输入数据的channel数量变为16,即输入数据维度为 8 × 16 。这里channel的概念相当于自然语言处理中的embedding,而该输入数据代表8个单词,其中每个单词的词向量维度大小为16。在这种情况下,过滤器的维度由5变为 5 × 16 ,最终输出的数据维度仍为 4 。

如果过滤器数量为 n,那么输出的数据维度就变为 4 × n。

• 一维卷积常用于序列模型,自然语言处理领域。

3、三维卷积

这里采用代数的方式对三维卷积进行介绍,具体思想与一维卷积、二维卷积相同。

假设输入数据的大小为 a1× a2× a3,channel数为 c,过滤器大小为f,即过滤器维度为 f × f × f × c(一般不写 channel 的维度),过滤器数量为 n。

基于上述情况,三维卷积最终的输出为 ( a1− f + 1 ) × ( a2− f + 1 ) × ( a3− f + 1 ) × n 。该公式对于一维卷积、二维卷积仍然有效,只有去掉不相干的输入数据维度就行。

三维卷积常用于医学领域(CT影响),视频处理领域(检测动作及人物行为)。

温馨提示:以上内容整理于网络,仅供参考,如果对您有帮助,留下您的阅读感言吧!
相关阅读
本类排行
相关标签
本类推荐

CPU | 内存 | 硬盘 | 显卡 | 显示器 | 主板 | 电源 | 键鼠 | 网站地图

Copyright © 2025-2035 诺佳网 版权所有 备案号:赣ICP备2025066733号
本站资料均来源互联网收集整理,作品版权归作者所有,如果侵犯了您的版权,请跟我们联系。

关注微信